
Department of CSE Page 1 of 22

Roll

Name

Age

1

ABC

19

2

DEF

22

3

XYZ

28

Roll

Address

1

KOL

2

DEL

3

MUM

UNIT-1

Introduction to Database Management System
As the name suggests, the database management system consists of two parts. They are:

1. Database and

2. Management System

What is a Database?

To find out what database is, we have to start from data, which is the basic building block of any

DBMS.

Data: Facts, figures, statistics etc. having no particular meaning (e.g. 1, ABC, 19 etc).

Record: Collection of related data items, e.g. in the above example the three data items had no

meaning. But if we organize them in the following way, then they collectively represent meaningful

information.

Roll Name Age

1 ABC 19

Table or Relation: Collection of related

records.

Roll Name Age

1 ABC 19

2 DEF 22

3 XYZ 28

The columns of this relation are called Fields, Attributes or Domains. The rows are
called Tuples or Records.

Database: Collection of related relations. Consider the following collection of tables:

 T1 T2

T3 T4

Department of CSE Page 2 of 22

Age and Hostel attributes are in different tables.

A database in a DBMS could be viewed by lots of different people with different responsibilities.

Figure 1.1: Empolyees are accessing Data through DBMS

For example, within a company there are different departments, as well as customers, who each need
to see different kinds of data. Each employee in the company will have different levels of access to the
database with their own customized front-end application.

In a database, data is organized strictly in row and column format. The rows are called Tuple or

Record. The data items within one row may belong to different data types. On the other hand, the

columns are often called Domain or Attribute. All the data items within a single attribute are of the

same data type.

What is Management System?

A database-management system (DBMS) is a collection of interrelated data and a set of programs to

access those data. This is a collection of related data with an implicit meaning and hence is a database.

The collection of data, usually referred to as the database, contains information relevant to an

Year

Hostel

I

H1

II

H2

Roll

Year

1

I

2

II

3

I

Department of CSE Page 3 of 22

enterprise. The primary goal of a DBMS is to provide a way to store and retrieve database information
that is both convenient and efficient. By data, we mean known facts that can be recorded and that have
implicit meaning.

Database systems are designed to manage large bodies of information. Management of data involves

both defining structures for storage of information and providing mechanisms for the manipulation of

information. In addition, the database system must ensure the safety of the information stored, despite

system crashes or attempts at unauthorized access. If data are to be shared among several users, the

system must avoid possible anomalous results.

Database Management System (DBMS) and Its Applications:

A Database management system is a computerized record-keeping system. It is a repository or a

container for collection of computerized data files. The overall purpose of DBMS is to allow he users

to define, store, retrieve and update the information contained in the database on demand. Information

can be anything that is of significance to an individual or organization.

Databases touch all aspects of our lives. Some of the major areas of application are as follows:

1. Banking

2. Airlines

3. Universities

4. Manufacturing and selling

5. Human resources

Enterprise Information

◦ Sales: For customer, product, and purchase information.

◦ Accounting: For payments, receipts, account balances, assets and other accounting information.

◦ Human resources: For information about employees, salaries, payroll taxes, andbenefits, and for

generation of paychecks.

◦ Manufacturing: For management of the supply chain and for tracking production of items infactories,

inventories of items inwarehouses and stores, and orders for items.
Online retailers: For sales data noted above plus online order tracking,generation of

recommendation lists, and

maintenance of online product evaluations.

◦ Banking: For customer information, accounts, loans, and banking transactions.
◦ Credit card transactions: For purchases on credit cards and generation of monthly statements.

◦ Finance: For storing information about holdings, sales, and purchases of financial instruments such

as stocks and bonds; also for storing real-time market data to enable online trading by customers

and

automated trading by the firm.

• Universities: For student information, course registrations, and grades (in addition to standard

enterprise information such as human resources and accounting).

• Airlines: For reservations and schedule information. Airlines were among the first to use databases

in a geographically distributed manner.

• Telecommunication: For keeping records of calls made, generating monthly bills, maintaining

balances on prepaid calling cards, and storing information about the communication networks.

Department of CSE Page 4 of 22

Purpose of Database Systems

Database systems arose in response to early methods of computerized management of commercial

data. As an example of such methods, typical of the 1960s, consider part of a university organization

that, among other data, keeps information about all instructors, students, departments, and course

offerings. One way to keep the information on a computer is to store it in operating system files. To

allow users to manipulate the information, the system has a number of application programs that

manipulate the files, including programs to:
Add new students, instructors, and courses

Register students for courses and generate class rosters

Assign grades to students, compute grade point averages (GPA), and generate transcripts

This typical file-processing system is supported by a conventional operating system. The system

stores permanent records in various files, and it needs different application programs to extract records

from, and add records to, the appropriate files. Before database management systems (DBMSs) were

introduced, organizations usually stored information in such systems. Keeping organizational

information in a file-processing system has a number of major disadvantages:

Data redundancy and inconsistency. Since different programmers create the files and application

programs over a long period, the various files are likely to have different structures and the programs

may be written in several programming languages. Moreover, the same information may be duplicated

in several places (files). For example, if a student has a double major (say, music and mathematics) the

address and telephone number of that student may appear in a file that consists of student records of

students in the Music department and in a file that consists of student records of students in the

Mathematics department. This redundancy leads to higher storage and access cost. In addition, it may

lead to data inconsistency; that is, the various copies of the same data may no longer agree. For

example, a changed student address may be reflected in the Music department records but not

elsewhere in the system.

Difficulty in accessing data. Suppose that one of the university clerks needs to find out the names of

all students who live within a particular postal-code area. The clerk asks the data-processing

department to generate such a list. Because the designers of the original system did not anticipate this

request, there is no application program on hand to meet it. There is, however, an application program

to generate the list of all students.

Data isolation. Because data are scattered in various files, and files may be in different formats,

writing new application programs to retrieve the appropriate data is difficult.

Integrity problems. The data values stored in the database must satisfy certain types of consistency

constraints. Suppose the university maintains an account for each department, and records the balance

amount in each account. Suppose also that the university requires that the account balance of a

department may never fall below zero. Developers enforce these constraints in the system by adding

appropriate code in the various application programs. However, when new constraints are added, it is

difficult to change the programs to enforce them. The problem is compounded when constraints

involve several data items from different files.

Atomicity problems. A computer system, like any other device, is subject to failure. In many
applications, it is crucial that, if a failure occurs, the data be restored to the consistent state that existed

prior to the failure.

Consider a program to transfer $500 from the account balance of department A to the account balance

of department B. If a system failure occurs during the execution of the program, it is possible that the

Department of CSE Page 5 of 22

$500 was removed from the balance of department A but was not credited to the balance of department
B, resulting in an inconsistent database state. Clearly, it is essential to database consistency that either
both the credit and debit occur, or that neither occur.

That is, the funds transfer must be atomic—it must happen in its entirety or not at all. It is difficult to

ensure atomicity in a conventional file-processing system.

Concurrent-access anomalies. For the sake of overall performance of the system and faster response,

many systems allow multiple users to update the data simultaneously. Indeed, today, the largest

Internet retailers may have millions of accesses per day to their data by shoppers. In such an

environment, interaction of concurrent updates is possible and may result in inconsistent data.

Consider department A, with an account balance of $10,000. If two department clerks debit the

account balance (by say $500 and $100, respectively) of department A at almost exactly the same time,

the result of the concurrent executions may leave the budget in an incorrect (or inconsistent) state.

Suppose that the programs executing on behalf of each withdrawal read the old balance, reduce that

value by the amount being withdrawn, and write the result back. If the two programs run concurrently,

they may both read the value $10,000, and write back $9500 and $9900, respectively. Depending on

which one writes the value last, the account balance of department A may contain either $9500 or

$9900, rather than the correct value of $9400. To guard against this possibility, the system must

maintain some form of supervision.

But supervision is difficult to provide because data may be accessed by many different application

programs that have not been coordinated previously.

Security problems. Not every user of the database system should be able to access all the data. For

example, in a university, payroll personnel need to see only that part of the database that has financial

information. They do not need access to information about academic records. But, since application

programs are added to the file-processing system in an ad hoc manner, enforcing such security

constraints is difficult.

These difficulties, among others, prompted the development of database systems. In what follows, we

shall see the concepts and algorithms that enable database systems to solve the problems with file-

processing systems.

Advantages of DBMS:

Controlling of Redundancy: Data redundancy refers to the duplication of data (i.e storing same data

multiple times). In a database system, by having a centralized database and centralized control of data

by the DBA the unnecessary duplication of data is avoided. It also eliminates the extra time for

processing the large volume of data. It results in saving the storage space.

Improved Data Sharing : DBMS allows a user to share the data in any number of application programs.

Data Integrity : Integrity means that the data in the database is accurate. Centralized control of the

data helps in permitting the administrator to define integrity constraints to the data in the database. For

example: in customer database we can can enforce an integrity that it must accept the customer only

from Noida and Meerut city.

Security : Having complete authority over the operational data, enables the DBA in ensuring that the

only mean of access to the database is through proper channels. The DBA can define authorization

checks to be carried out whenever access to sensitive data is attempted.

Department of CSE Page 6 of 22

Data Consistency : By eliminating data redundancy, we greatly reduce the opportunities for

inconsistency. For example: is a customer address is stored only once, we cannot have disagreement

on the stored values. Also updating data values is greatly simplified when each value is stored in one

place only. Finally, we avoid the wasted storage that results from redundant data storage.

Efficient Data Access : In a database system, the data is managed by the DBMS and all access to the
data is through the DBMS providing a key to effective data processing

Enforcements of Standards : With the centralized of data, DBA can establish and enforce the data
standards which may include the naming conventions, data quality standards etc.

Data Independence : Ina database system, the database management system provides the interface

between the application programs and the data. When changes are made to the data representation, the

meta data obtained by the DBMS is changed but the DBMS is continues to provide the data to

application program in the previously used way. The DBMs handles the task of transformation of data

wherever necessary.

Reduced Application Development and Maintenance Time : DBMS supports many important

functions that are common to many applications, accessing data stored in the DBMS, which facilitates

the quick development of application.

Disadvantages of DBMS

1) It is bit complex. Since it supports multiple functionality to give the user the best, the underlying
software has become complex. The designers and developers should have thorough knowledge

about the software to get the most out of it.

2) Because of its complexity and functionality, it uses large amount of memory. It also needs large
memory to run efficiently.

3) DBMS system works on the centralized system, i.e.; all the users from all over the world access

this database. Hence any failure of the DBMS, will impact all the users.

4) DBMS is generalized software, i.e.; it is written work on the entire systems rather specific one.

Hence some of the application will run slow.

View of Data

Department of CSE Page 7 of 22

A database system is a collection of interrelated data and a set of programs that allow users to access

and modify these data. A major purpose of a database system is to provide users with an abstract view

of the data. That is, the system hides certain details of how the data are stored and maintained.

Data Abstraction

For the system to be usable, it must retrieve data efficiently. The need for efficiency has led designers

to use complex data structures to represent data in the database. Since many database-system users

are not computer trained, developers hide the complexity from users through several levels of

abstraction, to simplify users’ interactions with the system:Database DISK

Figure 1.2 : Levels of Abstraction in a DBMS

• Physical level (or Internal View / Schema): The lowest level of abstraction describes how the data
are actually stored. The physical level describes complex low-level data structures indetail.

• Logical level (or Conceptual View / Schema): The next-higher level of abstraction describes what

data are stored in the database, and what relationships exist among those data. The logical level thus

describes the entire database in terms of a small number of relatively simple structures. Although

implementation of the simple structures at the logical level may involve complex physical-level

structures, the user of the logical level does not need to be aware of this complexity. This is referred

to as physical data independence.

• View level (or External View / Schema): The highest level of abstraction describes only part of the

entire database. Even though the logical level uses simpler structures, complexity remains because of

the variety of information stored in a large database. Many users of the database system do not need

all this information; instead, they need to access only a part of the database. The view level of

abstraction exists to simplify their interaction with the system. The system may provide many views

for the same database.

For example, we may describe a record as follows:

type instructor = record

ID : char (5);

name : char (20);

dept name : char (20);

salary : numeric (8,2);
end;

This code defines a new record type called instructor with four fields. Each field has a name

and a type associated with it. A university organization may have several such record types,
including

• department, with fields dept_name, building, and budget

• course, with fields course_id, title, dept_name, and credits

• student, with fields ID, name, dept_name, and tot_cred
At the physical level, an instructor, department, or student record can be described as a block of
consecutive storage locations.

Department of CSE Page 8 of 22

At the logical level, each such record is described by a type definition, as in the previous code
segment, and the interrelationship of these record types is defined as well.

Finally, at the view level, computer users see a set of application programs that hide details of the

data types. At the view level, several views of the database are defined, and a database user sees some
or all of these views.

Instances and Schemas

Databases change over time as information is inserted and deleted. The collection of information

stored in the database at a particular moment is called an instance of the database. The overall design

of the database is called the database schema. Schemas are changed infrequently, if at all. The

concept of database schemas and instances can be understood by analogy to a program written in a

programming language.

Each variable has a particular value at a given instant. The values of the variables in a program at a

point in time correspond to an instance of a database schema. Database systems have several

schemas, partitioned according to the levels of abstraction. The physical schema describes the

database design at the physical level, while the logical schema describes the database design at the

logical level. A database may also have several schemas at the view level, sometimes called

subschemas, which describe different views of the database. Of these, the logical schema is by far

the most important, in terms of its effect on application programs, since programmers construct

applications by using the logical schema. Application programs are said to exhibit physical data

independence if they do not depend on the physical schema, and thus need not be rewritten if the

physical schema changes.

Data Models

Underlying the structure of a database is the data model: a collection of conceptual tools for

describing data, data relationships, data semantics, and consistency constraints.

The data models can be classified into four different categories:

• Relational Model. The relational model uses a collection of tables to represent both data and the

relationships among those data. Each table has multiple columns, and each column has a unique

name. Tables are also known as relations. The relational model is an example of a record-based

model.

Entity-Relationship Model. The entity-relationship (E-R) data model uses a collection of basic

objects, called entities, and relationships among these objects.

Suppose that each department has offices in several locations and we want to record the locations at
which each employee works. The ER diagram for this variant of Works In, which we call Works In2

Department of CSE Page 9 of 22

Example - ternary

Department of CSE Page 10 of 22

E R Model -(Railway Booking System)

Department of CSE Page 11 of 22

E R Model -(Banking Transaction System)

Object-Based Data Model. Object-oriented programming (especially in Java, C++, or C#) has

become the dominant software-development methodology. This led to the development of an object-

oriented data model that can be seen as extending the E-R model with notions of encapsulation,

methods (functions), and object identity.

Semi-structured Data Model. The semi-structured data model permits the specification of data

where individual data items of the same type may have different sets of attributes. This is in contrast

to the data models mentioned earlier, where every data item of a particular type must have the same

set of attributes. The Extensible Markup Language (XML) is widely used to represent semi-

structured data.

Historically, the network data model and the hierarchical data model preceded the relational data

model.

These models were tied closely to the underlying implementation, and complicated the task of modeling

data.

As a result they are used little now, except in old database code that is still in service in some places.

Database Languages

A database system provides a data-definition language to specify the database

schema and a data-manipulation language to express database queries and updates. In practice,
the data-definition and data-manipulation languages are not two separate languages; instead they
simply form parts of a single database language, such as the widely used SQL language.

Data-Manipulation Language

A data-manipulation language (DML) is a language that enables users to access or manipulate data
as organized by the appropriate data model. The types of access are:

• Retrieval of information stored in thedatabase

• Insertion of new information into thedatabase

• Deletion of information from the database

• Modification of information stored in the database

There are basically two types:

• Procedural DMLs require a user to specify what data are needed and how to get those data.

• Declarative DMLs (also referred to as nonprocedural DMLs) require a user to specify what data

are needed without specifying how to get those data.

A query is a statement requesting the retrieval of information. The portion of a DML that involves

information retrieval is called a query language. Although technically incorrect, it is common practice

to use the terms query language and data-manipulation language synonymously.

Data-Definition Language (DDL)

We specify a database schema by a set of definitions expressed by a special language called a data-

definition language (DDL). The DDL is also used to specify additional properties of the data.

• Domain Constraints. A domain of possible values must be associated with every attribute (for

example, integer types, character types, date/time types). Declaring an attribute to be of a particular

domain acts as a constraint on the values that it can take. Domain constraints are the most elementary

form of integrity constraint. They are tested easily by the system whenever a new data item is entered

into the database.

Department of CSE Page 12 of 22

• Referential Integrity. There are cases where we wish to ensure that a value that appears in one

relation for a given set of attributes also appears in a certain set of attributes in another relation

(referential integrity). For example, the department listed for each course must be one that actually

exists. More precisely, the dept name value in a course record must appear in the dept name attribute

of some record of the department relation.

• Assertions. An assertion is any condition that the database must always satisfy. Domain constraints

and referential-integrity constraints are special forms of assertions. However, there are many

constraints that we cannot express by using only these special forms. For example, “Every

department must have at least five courses offered every semester” must be expressed as an

assertion..

• Authorization. We may want to differentiate among the users as far as the type of access they are

permitted on various data values in the database. These differentiations are expressed in terms of

authorization, the most common being: read authorization, which allows reading, but not

modification, of data; insert authorization, which allows insertion of new data, but not modification

of existing data; update authorization, which allows modification, but not deletion, of data; and

delete authorization, which allows deletion of data. We may assign the user all, none, or a

combination of these types of authorization.

The DDL, just like any other programming language, gets as input some instructions (statements) and

generates some output. The output of the DDL is placed in the data dictionary,which contains

metadata—that is, data about data.

Data Dictionary

We can define a data dictionary as a DBMS component that stores the definition of data

characteristics and relationships. You may recall that such “data about data” were labeled metadata.

The DBMS data dictionary provides the DBMS with its self describing characteristic. In effect, the

data dictionary resembles and X-ray of the company’s entire data set, and is a crucial element in the

data administration function.
For example, the data dictionary typically stores descriptions of all:

• Data elements that are define in all tables of all databases. Specifically the data dictionary stores
the name, datatypes, display formats, internal storage formats, and validation rules. The data
dictionary tells where an element is used, by whom it is used and so on.

• Tables define in all databases. For example, the data dictionary is likely to store the name of the

table creator, the date of creation access authorizations, the number of columns, and so on.

• Indexes define for each database tables. For each index the DBMS stores at least the index name

the attributes used, the location, specific index characteristics and the creation date.

• Define databases: who created each database, the date of creation where the database is located, who

the

DBA is and so on.

• End users and The Administrators of the data base

• Programs that access the database including screen formats, report formats application formats,

SQL queries and so on.

• Access authorization for all users of all databases.
• Relationships among data elements which elements are involved: whether the relationshipare

mandatory or optional, the connectivity and cardinality and so on.

Database Administrators and Database Users

A primary goal of a database system is to retrieve information from and store new information in the

database.

Database Users and User Interfaces

Department of CSE Page 13 of 22

There are four different types of database-system users, differentiated by the way they expect to
interact with the system. Different types of user interfaces have been designed for the different types
of users.

Naive users are unsophisticated users who interact with the system by invoking one of the

application programs that have been written previously. For example, a bank teller who needs to

transfer $50 from account A to account B invokes a program called transfer.

Application programmers are computer professionals who write application programs. Application

programmers can choose from many tools to develop user interfaces. Rapid application

development (RAD) tools are tools that enable an application programmer to construct forms and

reports without writing a program.

Sophisticated users interact with the system without writing programs. Instead, they form their

requests in a database query language. They submit each such query to a query processor, whose

function is to break down DML statements into instructions that the storage manager understands.

Analysts who submit queries to explore data in the database fall in this category.

Online analytical processing (OLAP) tools simplify analysts’ tasks by letting them view summaries

of data in different ways. For instance, an analyst can see total sales by region (for example, North,

South, East, and West), or by product, or by a combination of region and product (that is, total sales

of each product in each region).

Database Architecture:

The architecture of a database system is greatly influenced by the underlying computer system on

which the database system runs. Database systems can be centralized, or client-server, where one

server machine executes work on behalf of multiple client machines. Database systems can also be

designed to exploit parallel computer architectures. Distributed databases span multiple

geographically separated machines.

Figure 1.3: Database System Architecture

A database system is partitioned into modules that deal with each of the responsibilities of the overall

system. The functional components of a database system can be broadly divided into the storage

manager and the query processor components. The storage manager is important because databases

Department of CSE Page 14 of 22

typically require a large amount of storage space. The query processor is important because it helps

the database system simplify and facilitate access to data.

Figure 1.4: Two-tier and three-tier architectures.

Query Processor:

The query processor components include

· DDL interpreter, which interprets DDL statements and records the definitions in the data
dictionary.

· DML compiler, which translates DML statements in a query language into an evaluation plan

consisting of low-level instructions that the query evaluation engine understands.

A query can usually be translated into any of a number of alternative evaluation plans that all give the

same result. The DML compiler also performs query optimization, that is, it picks the lowest cost

evaluation plan from among the alternatives.

Query evaluation engine, which executes low-level instructions generated by the DML compiler.

Storage Manager:

A storage manager is a program module that provides the interface between the lowlevel data stored in

the database and the application programs and queries submitted to the system. The storage

manager is responsible for the interaction with the file manager.

The storage manager components include:

Department of CSE Page 15 of 22

· Authorization and integrity manager, which tests for the satisfaction of integrity constraints

and checks the authority of users to access data.

· Transaction manager, which ensures that the database remains in a consistent (correct) state

despite system failures, and that concurrent transaction executions proceed without conflicting.

· File manager, which manages the allocation of space on disk storage and the data structures

used to represent information stored on disk.

· Buffer manager, which is responsible for fetching data from disk storage into main memory,

and deciding what data to cache in main memory. The buffer manager is a critical part of the

database system, since it enables the database to handle data sizes that are much larger than the size

of main memory.

Transaction Manager:

A transaction is a collection of operations that performs a single logical function in a database
application. Each transaction is a unit of both atomicity and consistency. Thus, we require that
transactions do not violate any database-consistency constraints.

Conceptual Database Design - Entity Relationship(ER) Modeling:

Database Design Techniques

1. ER Modeling (Top down Approach)

2. Normalization (Bottom Up approach)

What is ER Modeling?

A graphical technique for understanding and organizing the data independent of the actual
database implementation

We need to be familiar with the following terms to go further.

Entity

Any thing that has an independent existence and about which we collect data. It is also known as entity
type.

In ER modeling, notation for entity is given below.

Entity instance

Entity instance is a particular member of the entity type.

Example for entity instance : A particular employee

Regular Entity

An entity which has its own key attribute is a regular entity.

Example for regular entity : Employee.

Weak entity

An entity which depends on other entity for its existence and doesn't have any key attribute of its own is

a weak entity.

Department of CSE Page 16 of 22

Example for a weak entity : In a parent/child relationship, a parent is considered as a strong entity

and the child is a weak entity.

In ER modeling, notation for weak entity is given below.

Attributes

Properties/characteristics which describe entities are called attributes.

In ER modeling, notation for attribute is given below.

Domain of Attributes

The set of possible values that an attribute can take is called the domain of the attribute. For example,

the attribute day may take any value from the set {Monday, Tuesday ... Friday}. Hence this set can

be termed as the domain of the attribute day.

Key attribute

The attribute (or combination of attributes) which is unique for every entity instance is called key

attribute.

E.g the employee_id of an employee, pan_card_number of a person etc.If the key attribute
consists of two or more attributes in combination, it is called a composite key.

In ER modeling, notation for key attribute is given below.

Simple attribute

If an attribute cannot be divided into simpler components, it is a simple attribute.

Example for simple attribute : employee_id of an employee.

Composite attribute

If an attribute can be split into components, it is called a composite attribute.

Example for composite attribute : Name of the employee which can be split into First_name,
Middle_name, and Last_name.

Single valued Attributes

If an attribute can take only a single value for each entity instance, it is a single valued attribute.

example for single valued attribute : age of a student. It can take only one value for a particular student.

Multi-valued Attributes

Department of CSE Page 17 of 22

If an attribute can take more than one value for each entity instance, it is a multi-valued attribute. Multi-

valued

example for multi valued attribute : telephone number of an employee, a particular employee may

have multiple telephone numbers.

In ER modeling, notation for multi-valued attribute is given below.

Stored Attribute

An attribute which need to be stored permanently is a stored attribute

Example for stored attribute : name of a student

Derived Attribute

An attribute which can be calculated or derived based on other attributes is a derived attribute.

Example for derived attribute : age of employee which can be calculated from date of birth and current
date.

In ER modeling, notation for derived attribute is given below.

Relationships

Associations between entities are called relationships

Example : An employee works for an organization. Here "works for" is a relation between the
entities employee and organization.

In ER modeling, notation for relationship is given below.

However in ER Modeling, To connect a weak Entity with others, you should use a weak
relationship notation as given below

Department of CSE Page 18 of 22

Degree of a Relationship

Degree of a relationship is the number of entity types involved. The n-ary relationship is the
general form for degree n. Special cases are unary, binary, and ternary ,where the degree is 1, 2,
and 3, respectively.

Example for unary relationship : An employee ia a manager of another

employee Example for binary relationship : An employee works-for

department. Example for ternary relationship : customer purchase item

from a shop keeper Cardinality of a Relationship

Relationship cardinalities specify how many of each entity type is allowed. Relationships can have

four possible connectivities as given below.

1. One to one (1:1) relationship

2. One to many (1:N) relationship

3. Many to one (M:1)relationship

4. Many to many (M:N) relationship

The minimum and maximum values of this connectivity is called the cardinality of the relationship

Example for Cardinality – One-to-One (1:1)

Employee is assigned with a parking space.

One employee is assigned with only one parking space and one parking space is assigned to
only one employee. Hence it is a 1:1 relationship and cardinality is One-To-One (1:1)

In ER modeling, this can be mentioned using notations as given below

Department of CSE Page 19 of 22

SE MANGAEMENT

SYSTEM

Example for Cardinality – One-to-Many (1:N)

Organization has employees

One organization can have many employees , but one employee works in only one organization.
Hence it is a 1:N relationship and cardinality is One-To-Many (1:N)

In ER modeling, this can be mentioned using notations as given below

Example for Cardinality – Many-to-One (M :1)

It is the reverse of the One to Many relationship. employee works in organization

One employee works in only one organization But one organization can have many employees.
Hence it is a M:1 relationship and cardinality is Many-to-One (M :1)

In ER modeling, this can be mentioned using notations as given below.

Department of CSE Page 20 of 22

Cardinality – Many-to-Many (M:N)

Students enrolls for courses

One student can enroll for many courses and one course can be enrolled by many students. Hence
it is a M:N relationship and cardinality is Many-to-Many (M:N)

In ER modeling, this can be mentioned using notations as given below

Relationship Participation

1. Total

In total participation, every entity instance will be connected through the relationship to another

instance of the other participating entity types

2. Partial

Example for relationship participation

Consider the relationship - Employee is head of the department.

Here all employees will not be the head of the department. Only one employee will be the head
of the department. In other words, only few instances of employee entity participate in the
above relationship. So employee entity's participation is partial in the said relationship.

Advantages and Disadvantages of ER Modeling (Merits and Demerits of ER Modeling)

Advantages

1. ER Modeling is simple and easily understandable. It is represented in business users language and
it can be understood by non-technical specialist.

2. Intuitive and helps in Physical Database creation.

Department of CSE Page 21 of 22

3. Can be generalized and specialized based on needs.

4. Can help in database design.

5. Gives a higher level description of the system.

Disadvantages

1. Physical design derived from E-R Model may have some amount of ambiguities orinconsistency.

2. Sometime diagrams may lead to misinterpretations

Relational Model

The relational model is today the primary data model for commercial data processing applications. It

attained its primary position because of its simplicity, which eases the job of the programmer,

compared to earlier data models such as the network model or the hierarchical model.

Structure of Relational Databases:

A relational database consists of a collection of tables, each of which is assigned a unique name. For

example, consider the instructor table of Figure:1.5, which stores information about instructors. The

table has four column headers: ID, name, dept name, and salary. Each row of this table records

information about an instructor, consisting of the instructor’s ID, name, dept name, and salary.

Database Schema

When we talk about a database, we must differentiate between the database schema, which is the

logical design of the database, and the database instance, which is a snapshot of the data in the

database at a given instant in time. The concept of a relation corresponds to the programming-

language notion of a variable, while the concept of a relation schema corresponds to the

programming-language notion of type definition.

Keys

A superkey is a set of one or more attributes that, taken collectively, allow us to identify uniquely a

tuple in the relation. For example, the ID attribute of the relation instructor is sufficient to distinguish
one instructor tuple from another. Thus, ID is a superkey. The name attribute of instructor, on the

other hand, is not a superkey, because several instructors might have the same name.

A superkey may contain extraneous attributes. For example, the combination of ID and name is a

superkey for the relation instructor. If K is a superkey, then so is any superset of K. We are often

interested in superkeys for which no proper subset is a superkey. Such minimal superkeys are called

candidate keys.

It is customary to list the primary key attributes of a relation schema before the other attributes; for

example, the dept name attribute of department is listed first, since it is the primary key. Primary key

attributes are also underlined. A relation, say r1, may include among its attributes the primary key of

another relation, say r2. This attribute is called a foreign key from r1, referencing r2.

Schema Diagrams

A database schema, along with primary key and foreign key dependencies, can be depicted by

schema diagrams. Figure 1.12 shows the schema diagram for our university organization.

Department of CSE Page

22 of 22

Figure 1.12 : Schema diagram for the university database.

Referential integrity constraints other than foreign key constraints are not shown explicitly in

schema diagrams.We will study a different diagrammatic representation called the entity-

relationship diagram.

